Cost-Sensitive Multitask Active Learning for Characterization of Urban Environments With Remote Sensing
نویسندگان
چکیده
منابع مشابه
Active Learning in Cost - Sensitive Environments
Active learning techniques aim to reduce the amount of labeled data required for a supervised learner to achieve a certain level of performance. This can be very useful in domains where unlabeled data is easy to obtain but labelling data is costly. In this dissertation, I introduce methods of creating computationally efficient active learning techniques that handle different misclassification c...
متن کاملMultitask SVM learning for Remote Sensing Data Classification
This paper proposes multitask learning to tackle several problems in remote sensing data classification. The method alleviates sample selection bias by imposing cross-information in the classifiers through matrix regularization. We consider the support vector machine as core learner and two regularization schemes for multitask learning. In the first one, we use the Euclidean distance of the pre...
متن کاملActive Cost-Sensitive Learning
For many classification tasks a large number of instances available for training are unlabeled and the cost associated with the labeling process varies over the input space. Meanwhile, virtually all these problems require classifiers that minimize a nonuniform loss function associated with the classification decisions (rather than the accuracy or number of errors). For example, to train pattern...
متن کاملLow Cost UAV-based Remote Sensing for Autonomous Wildlife Monitoring
In recent years, developments in unmanned aerial vehicles, lightweight on-board computers, and low-cost thermal imaging sensors offer a new opportunity for wildlife monitoring. In contrast with traditional methods now surveying endangered species to obtain population and location has become more cost-effective and least time-consuming. In this paper, a low-cost UAV-based remote sensing platform...
متن کاملSpatially Cost-Sensitive Active Learning
In active learning, one attempts to maximize classifier performance for a given number of labeled training points by allowing the active learning algorithm to choose which points should be labeled. Typically, when the active learner requests labels for the selected points, it assumes that all points require the same amount of effort to label and that the cost of labeling a point is independent ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Geoscience and Remote Sensing Letters
سال: 2018
ISSN: 1545-598X,1558-0571
DOI: 10.1109/lgrs.2018.2813436